New Bending Algorithm for Field-Driven Molecular Dynamics

نویسندگان

  • Dao-Long Chen
  • Tei-Chen Chen
  • Yi-Shao Lai
چکیده

A field-driven bending method is introduced in this paper according to the coordinate transformation between straight and curved coordinates. This novel method can incorporate with the periodic boundary conditions in analysis along axial, bending, and transverse directions. For the case of small bending, the bending strain can be compatible with the beam theory. Consequently, it can be regarded as a generalized SLLOD algorithm. In this work, the bulk copper beam under bending is analyzed first by the novel bending method. The bending stress estimated here is well consistent to the results predicted by the beam theory. Moreover, a hollow nanowire is also analyzed. The zigzag traces of atomic stress and the corresponding 422 common neighbor type can be observed near the inner surface of the hollow nanowire, which values are increased with an increase of time. It can be seen that the novel bending method with periodic boundary condition along axial direction can provide a more physical significance than the traditional method with fixed boundary condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of BKCa channel openers by molecular field alignment and patent data-driven analysis

In this work, we present the first comprehensive molecular field analysis of patent structures on how the chemical structure of drugs impacts the biological binding. This task was formulated as searching for drug structures to reveal shared effects of substitutions across a common scaffold and the chemical features that may be responsible. We used the SureChEMBL patent database, which prov...

متن کامل

Stability Analysis and Robust PID Control of Cable Driven Robots Considering Elasticity in Cables

In this paper robust PID control of fully-constrained cable driven parallel manipulators with elastic cables is studied in detail. In dynamic analysis, it is assumed that the dominant dynamics of cable can be approximated by linear axial spring. To develop the idea of control for cable robots with elastic cables, a robust PID control for cable driven robots with ideal rigid cables is firstly de...

متن کامل

Modifications of Internal Molecular Structures of Asphalt Components Due to Physical Aging

The internal structure of a molecule can be presented in terms of intra-molecular (i.e., inter atomic)and inter-molecular energies such as van der Waals, bond and bending, torsion, and inversion energy.In this study, changes in molecular energies of individual asphalt components are evaluated as afunction of physical aging factors. The factors for physical aging such as temperature and pressure...

متن کامل

Evaluation of Forming Severity and Thickness Variation in Deep Drawing Process

This paper presents a new methodology for complete solution of general shape deep drawn parts. Evaluation of forming severity, estimation of the punch load and prediction of the thickness variation are the major results obtained in this work. The punch work is the summation of the homogenous work of flange deformation and bending and frictional works. To evaluate the strain energy of the flange...

متن کامل

Multiple Time Scales in Classical and Quantum Classical Molecular Dynamics

The existence of multiple time scales in molecular dynamics poses interesting and challenging questions from an analytical as well as from a numerical point of view In this paper we consider simpli ed models with two essential time scales and describe how these two time scales inter act The discussion focuses on classical molecular dynamics CMD with fast bond stretching and bending modes and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2009